Some Relations and Subsets Generated by Principal Consistent Subset of Semigroup with Apartness
نویسنده
چکیده
The investigation is in the Constructive algebra in the sense of E. Bishop, F. Richman, W. Ruitenburg, D. van Dalen and A. S. Troelstra. Algebraic structures with apartness the first were defined and studied by A. Heyting. After that, some authors studied algebraic structures in constructive mathematics as for example: D. van Dalen, E. Bishop, P. T. Johnstone, A. Heyting, R. Mines, J. C. Mulvey, F. Richman, D. A. Romano, W. Ruitenburg and A. Troelstra. This paper is one of articles in their the author tries to investigate semugroups with apartnesses. Relation q on S is a coequality relation on S if it is consistent, symmetric and cotransitive; coequality relation is generalization of apatness. The main subject of this consideration are characterizations of some coequality relations on semigroup S with apartness by means od special ideals J(a) = {x ∈ S : a # SxS}, principal consistent subsets C(a) = {x ∈ S : x # SaS} (a ∈ S) of S and by filled product of relations on S. Let S = (S, =, 6=, ·, 1) be a semigroup with apartness. As preliminaries we will introduce some special notions, notations and results in set theory, commutative ring theory and semigroup theory in constructive mathematics and we will give proofs of several general theorems in semigroup theory. In the next section we will introduce relation s on S by (x, y) ∈ s iff y ∈ C(x) and we will describe internal filfulments c(s ∪ s−1) and c(s ∩ s−1) and their classes A(a) = ∩An(a) and K(a) = ∩Kn(a) respectively. We will give the proof that the set K(a) is maximal strongly extensional consistent ideal of S for every a in S. Before that, we will analyze semigroup S with relation q = c(s ∪ s−1) in two special cases: (i) the relation q is a band coequality relation on S : (ii) q is left zero band coequality relation on S. Beside that, we will introduce several compatible equality and coequality relations on S by sets A(a), An(a), K(a) and Kn(a).
منابع مشابه
An Introduction to Implicative Semigroups with Apartness
The setting of this research is Bishop’s constructive mathematics. Following ideas of Chan and Shum, exposed in their famous paper “Homomorphisms of implicative semigroups”, we discuss the structure of implicative semigroups on sets with tight apartness. Moreover, we use anti-orders instead of partial orders. We study concomitant issues induced by existence of apartness and anti-orders giving s...
متن کاملRegular ordered semigroups and intra-regular ordered semigroups in terms of fuzzy subsets
Let $S$ be an ordered semigroup. A fuzzy subset of $S$ is anarbitrary mapping from $S$ into $[0,1]$, where $[0,1]$ is theusual interval of real numbers. In this paper, the concept of fuzzygeneralized bi-ideals of an ordered semigroup $S$ is introduced.Regular ordered semigroups are characterized by means of fuzzy leftideals, fuzzy right ideals and fuzzy (generalized) bi-ideals.Finally, two m...
متن کاملTRANSFORMATION SEMIGROUPS AND TRANSFORMED DIMENSIONS
In the transformation semigroup (X, S) we introduce the height of a closed nonempty invariant subset of X, define the transformed dimension of nonempty subset S of X and obtain some results and relations.
متن کاملFuzzy Ideals Generated by Fuzzy Subsets in Semigroups
We characterize the fuzzy ideal generated by a fuzzy subset in a semigroup and the fuzzy interior ideal generated by a fuzzy subset in a semigroup. Our work generalizes the characterizations ([8]) of those fuzzy ideals generated by fuzzy subsets in semigroups with an identity element.
متن کاملA Theorem on Anti - Ordered Factor - Semigroups
Let K be an anti-ideal of a semigroup (S,=, =, ·, θ) with apartness. A construction of the anti-congruence Q(K) and the quasi-antiorder θ, generated by K, are presented. Besides, a construction of the anti-order relation Θ on syntactic semigroup S/Q(K), generated by θ, is given in Bishop’s constructive mathematics.
متن کامل